Mapping Cambridge Secondary 1 Mathematics (Stages 7-9) to Florida Mathematics Standards (Grades 6-8)

Introduction

Cambridge International Examinations has mapped the Cambridge Secondary 1 Mathematics (Stages 7-9) to Florida Mathematics Standards (Grades 6-8). This mapping document shows where the Florida Mathematics standards are covered in the Cambridge Secondary 1 Mathematics Framework and schemes of work.

The Cambridge Secondary 1 Framework provides a comprehensive set of progressive learning objectives for Mathematics. The objectives detail what the learner should know or what they should be able to do in Mathematics in Stages 7 to 9 (the equivalent of the US Grades 6 to 8) of secondary education. They provide a structure for teaching and learning and a reference against which learners' ability and understanding can be checked. Each learning objective has a unique curriculum framework code, e.g. 7Nf5. These codes appear in the Cambridge Teacher Guide, schemes of work and other published resources. Codes in red indicate where learning objectives are mapped to a different grade from the equivalent Cambridge stage, e.g. where 8 Nc 7 (Cambridge Stage 8) is mapped to Grade 6 (rather than Grade 7). Cambridge learning objectives may be mapped to more than one Florida grade.

Cambridge Secondary 1 Mathematics Teacher Guide Appendix - Opportunities for ICT outlines where in the Cambridge Secondary 1 Curriculum Framework opportunities for using ICT may be used if the equipment is available. A copy of the Teacher Guide and scheme of work, can be found at https://cambridgesecondary1.cie.org.uk/

Contents (click on page number)

Florida Grade 7 ... 16
\qquad

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
Key ideas and details	Framework - learning objectives	Scheme of work - units
RATIOS \& PROPORTIONAL RELATIONSHIPS		
MAFS.6.RP.1.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	7Nf9 Recognise the relationship between ratio and proportion.	Unit 3A Number and Calculation
MAFS.6.RP.1.2 Understand the concept of a unit rate a/b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."	7Nf8 Use ratio notation, simplify ratios and divide a quantity into two parts in a given ratio.	Unit 3A Number and Calculation
MAFS.6.RP.1.3 Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent.	7Nf10 Use direct proportion in context; solve simple problems involving ratio and direct proportion. 7Nf5 Understand percentage as the number of parts in every 100 ; use fractions and percentages to describe parts of shapes,	Unit 3A Number and Calculation Unit 2A Number and Calculation

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities. e. Understand the concept of Pi as the ratio of the circumference of a circle to its diameter.	quantities and measures. 8Nc7 Recall relationships between units of measurement. 7Nf1 Recognise the equivalence of simple fractions, decimals and percentages. 8Nc3 Recall simple equivalent fractions, decimals and percentages. 7Nf6 Calculate simple percentages of quantities (whole number answers) and express a smaller quantity as a fraction or percentage of a larger one. 7Nf7 Use percentages to represent and compare different quantities. 8Ma1 Know the definition of a circle and the names of its parts; know and use formulae for the circumference and area of a circle.	Stage 8 Unit 1A Number and Calculation Unit 1A Number and Calculation Stage 8 Unit 1A Number and Calculation Unit 3A Number and Calculation Unit 3A Number and Calculation Stage 8 Unit 3C Handling Data and Measure
THE NUMBER SYSTEM		

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
MAFS.6.NS.1. 1 Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=$ $8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?	8Nc4 Use known facts and place value to multiply and divide simple fractions. 8Nc6 Use known facts and place value to calculate simple fractions and percentages of quantities.	Stage 8 Unit 3A Number and Calculation Stage 8 Unit 2A Number and Calculation
MAFS.6.NS.2.2 Fluently divide multi-digit numbers using the standard algorithm.	7Nc1 Consolidate the rapid recall of number facts, including positive integer complements to 100 , multiplication facts to 10×10 and associated division facts. 8Ni1 Add, subtract, multiply and divide integers.	Unit 1A Number and Calculation Stage 8 Unit 1A Number and Calculation
MAFS.6.NS.2.3 Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	7Np1 Interpret decimal notation and place value; multiply and divide whole numbers and decimals by 10,100 or 1000 . 7Nc8 Add and subtract integers and decimals, including numbers with different numbers of decimal places. 7Nc9 Multiply and divide decimals with one and/or two places by single-digit numbers, e.g. $13.7 \times$	Unit 1A Number and Calculation Unit 3A Number and Calculation Unit 3A Number and Calculation

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
	$8,4.35 \div 5$. 8Nc5 Use known facts and place value to multiply and divide simple decimals, e.g. $0.07 \times 9,2.4 \div 3$. 8Np1 Read and write positive integer powers of 10 ; multiply and divide integers and decimals by $0.1,0.01$. 8Np3 Round whole numbers to a positive integer power of 10, e.g. $10,100,1000$ or decimals to the nearest whole number or one or two decimal places. 8Nc11 Consolidate adding and subtracting integers and decimals, including numbers with differing numbers of decimal places. 8Nc12 Divide integers and decimals by a single-digit number, continuing the division to a specified number of decimal places, e.g. $68 \div 7$. 8Nc13 Multiply and divide integers and decimals by decimals such as 0.6 or 0.06 , understanding where to place the	Stage 8 Unit 2A Number and Calculation Stage 8 Unit 1A Number and Calculation Stage 8 Unit 1A Number and Calculation Stage 8 Unit 2A Number and Calculation Stage 8 Unit 2A Number and Calculation Stage 8 Unit 3A Number and Calculation

Learn • Discover • Achieve

Florida Mathematics Standards

Florida Grade 6	
MAFS.6.NS.2.4 Find the greatest common factor of two whole numbers less than	

Cambridge Secondary 1 Mathematics

Stage 7

decimal point by considering equivalent calculations, e.g. 4.37 $\times 0.3=(4.37 \times 3) \div 10,92.4 \div$ $0.06=(92.4 \times 100) \div 6$.

7Ni2 Recognise multiples, factors, Unit 2A Number and Calculation common factors, primes (all less than 100), making use of simple tests of divisibility; find the lowest common multiple in simple cases; use the 'sieve' for generating primes developed by Eratosthenes.

8 Ni 2 Identify and use multiples, factors, common factors, highest common factors, lowest common multiples and primes; write a number in terms of its prime factors, e.g. $500=2^{2} \times 5^{3}$.

7Nf2 Simplify fractions by cancelling common factors and identify equivalent fractions; change an improper fraction to a mixed number, and vice versa; convert terminating decimals to fractions, e.g. $0.23={ }^{23} / 100$.

7Nc10 Know that in any division where the dividend is not a multiple of the divisor there will be

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
	a remainder, e.g. $157+25=6$ remainder 7 . The remainder can be expressed as a fraction of the divisor, e.g. $157 \div 25=6^{7} / 25$.	
MAFS.6.NS.3.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.	7Ni1 Recognise negative numbers as positions on a number line, and order, add and subtract positive and negative integers in context.	Unit 1A Number and Calculation
MAFS.6.NS.3.6 Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite. b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. c. Find and position integers and other rational numbers on a horizontal or	7Ni3 Recognise squares of whole number to at least 20×20 and the corresponding square roots; use the notation 7^{2} and $\sqrt{ } 49$. 7Ni1 Recognise negative numbers as positions on a number line, and order, add and subtract positive and negative integers in context. 7Gp2 Transform 2D points and shapes by: - reflection in a given line - rotation about a given point - translation Know that shapes remain congruent after these transformations. 7Gp1 Read and plot coordinates	Unit 2A Number and Calculation Unit 1A Number and Calculation Unit 3C Handling Data and Geometry Unit 3C Handling Data and

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	of points determined by geometrical information in all four quadrants.	Geometry
MAFS.6.NS.3.7 Understand ordering and absolute value of rational numbers. a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret -3 >-7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right. b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$. c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $\|-30\|=30$ to describe the size of the debt in dollars. d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.	7Np2 Order decimals including measurements, changing these to the same units. 8Np2 Order decimals, including measurements, making use of the $=, \neq,>$ and $<$ signs. 8Np3 Round whole numbers to a positive integer power of 10, e.g. $10,100,1000$ or decimals to the nearest whole number or one or two decimal places.	Unit 1A Number and Calculation Stage 8 Unit 1A Number and Calculation Stage 8 Unit 1A Number and Calculation
MAFS.6.NS.3.8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	7Mt1 Draw and interpret graphs in real life context involving more than one stage, e.g. travel graphs.	Unit 3B Measure

```
Cambridge Secondary 1 Mathematics
```

Florida Grade 6	Stage 7	
	7Gp1 Read and plot coordinates of points determined by geometric information in all four quadrants. 8As4 Construct tables of values and use all four quadrants to plot the graphs of linear functions, where y is given explicitly in terms of x; recognise that equations of the form $y=m x+c$ correspond to straight-line graphs. 7Nc11 Know when to round up or down after division when the context requires a whole-number answer. 7Np3 Round whole numbers to the nearest 10, 100 or 1000 and decimals, including measurements, to the nearest whole number or one decimal place.	Unit 3C Handling Data and Geometry Stage 8 Unit 2B Algebra and Geometry Unit 2A Number and Calculation Unit 1A Number and Calculation
EXPRESSIONS \& EQUATIONS		
MAFS.6.EE.1.1 Write and evaluate numerical expressions involving wholenumber exponents.	7Ae6 Substitute positive integers into simple linear expressions/formulae.	Unit 2B Algebra and Measure

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
MAFS.6.EE.1.2 Write, read, and evaluate expressions in which letters stand for numbers. a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y. b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms. c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving wholenumber exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	7Ae1 Use letters to represent unknown numbers or variables; know the meanings of the words term, expression and equation. 7 Ae3 Construct simple algebraic expressions by using letters to represent numbers. 7Ae2 Know that algebraic operations follow the same order as arithmetic operations.	Unit 1B Algebra and Measure Unit 1B Algebra and Measure Unit 1B Algebra and Measure
MAFS.6.EE.1.3 Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+$ x) to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression 6 ($4 x 3 y$); apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	7 Ae4 Simplify linear expressions, e.g. collect like terms; multiply a constant over a bracket.	Unit 1B Algebra and Measure
MAFS.6.EE.1.4 Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.		

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
MAFS.6.EE.2.5 Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	7Ae7 Construct and solve simple linear equations with integer coefficients (unknown on one side only), e.g. $2 x=8,3 x+5=14,9-$ $2 x=7$.	Unit 2B Algebra and Measure
MAFS.6.EE.2.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	7Ae3 Construct simple algebraic expressions by using letters to represent numbers. 7 As3 Represent simple functions using words, symbols and mappings. 7As1 Generate terms of an integer sequence and find a term given its position in the sequence; find simple term-to-term rules. 7 As2 Generate sequences from spatial patterns and describe the general term in simple cases.	Unit 1B Algebra and Measure Unit 2B Algebra and Measure Unit 1B Algebra and Measure Unit 1B Algebra and Measure
MAFS.6.EE.2.7 Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all non-negative rational numbers.	7 Ae5 Derive and use simple formulae, e.g. to change hours to minutes.	Unit 2B Algebra and Measure
MAFS.6.EE.2.8 Write an inequality of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.		

Learn • Discover • Achieve

Florida Mathematics Standards

Cambridge Secondary 1 Mathematics

Florida Grade 6

MAFS.6.EE.3.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65$ to represent the relationship between distance and time.

GEOMETRY

MAFS.6.G.1.1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems.

Stage 7

7As4 Generate coordinate pairs \quad Unit 2B Algebra and Measure that satisfy a linear equation, where y is given explicitly in terms of x; plot the corresponding graphs; recognise straight-line graphs parallel to the x - or y-axis.

7Ma4 Calculate the area of cubes and cuboids from their nets.

7Ma2 Derive and use formulae for the area and perimeter of a rectangle; calculate the perimeter and area of compound shapes made from rectangles.

7Gs2 Use the notation and labelling conventions for points, lines, angles and shapes.

8Gs6 Solve geometrical problems using properties of angles, of parallel and intersecting lines, and of triangles and special quadrilaterals, explaining reasoning with diagrams and text.

Learn • Discover • Achieve

| Florida Mathematics Standards | Cambridge Secondary 1 Mathematics |
| :--- | :--- | :--- |
| Florida Grade 6 | Stage 7 |

CAMBRIDGE
International Examinations
Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
MAFS.6.SP.1.3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	7Dp2 Calculate the mean, including from a simple frequency table. 7Dp1 Find the mode (or modal class for grouped data), median and range.	Unit 2C Handling Data and Geometry Unit 2C Handling Data and Geometry
MAFS.6.SP.2.4 Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	7Dc3 Construct and use frequency tables to gather discrete data, grouped where appropriate in equal class intervals. 7Dp3 Draw and interpret: bar-line graphs and bar charts - frequency diagrams for grouped discrete data - simple pie charts - pictograms.	Unit 3C Handling Data and Geometry Unit 2C Handling Data and Geometry
MAFS.6.SP.2.5 Summarize numerical data sets in relation to their context, such as by: a. Reporting the number of observations. b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.	8Dp1 Calculate statistics for sets of discrete and continuous data; recognise when to use the range, mean, median and mode and, for	Stage 8 Unit 1C Handling Data and Measure

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 6	Stage 7	
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	grouped data, the modal class. 7Di2 Compare two simple distributions using the range and the mode, median or mean. 7Di1 Draw conclusions based on the shape of graphs and simple statistics.	Unit 3C Handling Data and Geometry Unit 3C Handling Data and Geometry
Problem solving is implied throughout the Florida Standards but is an explicit strand of Cambridge learning objectives (7Pt1-8, 7Ps1-6).	Stage 7 Framework not mapped: 7Nf3-4, 7Nc2-7, 7Gs3-10, 7MI1- 3, 7Mt2, 7Ma1, 7Pt1-8, 7Ps1-6	

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
Key ideas and details	Framework - learning objectives	Scheme of work - units
RATIOS \& PROPORTIONAL RELATIONSHIPS		
MAFS.7.RP.1.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour.	8MI2 Know that distances in the USA, the UK and some other countries are measured in miles, and that one kilometre is about $5 / 8$ of a mile. 8Nc7 Recall relationships between units of measurement.	Unit 2C Handling Data and Measure Unit 1A Number and Calculation
MAFS.7.RP.1.2 Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.	8Nf6 Use equivalent fractions, decimals and percentages to compare different quantities. 8Nf7 Simplify ratios, including those expressed in different units; divide a quantity into more than two parts in a given ratio. 8Nf8 Use the unitary method to solve simple problems involving ratio and direct proportion.	Unit 2A Number and Calculation Unit 3A Number and Calculation Unit 3A Number and Calculation

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and ($1, r$) where r is the unit rate.	9Nf6 Recognise when two quantities are directly proportional; solve problems involving proportionality, e.g. converting between different currencies.	Stage 9 Unit 3A Number and Measure
MAFS.7.RP.1.3 Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	8Nc8 Solve simple word problems including direct proportion problems. 9Nf5 Compare two ratios; interpret and use ratio in a range of contexts. 8Nf8 Use the unitary method to solve simple problems involving ratio and direct proportion. 8Nf5 Calculate and solve problems involving percentages of quantities and percentage increases or decreases; express one given number as a fraction or percentage of another.	Unit 2A Number and Calculation Stage 9 Unit 3A Number and Measure Unit 3A Number and Calculation Unit 2A Number and Calculation
THE NUMBER SYSTEM		

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
MAFS.7.NS.1.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0 . For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Understand $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. d. Apply properties of operations as strategies to add and subtract rational numbers.	9Ni1 Add, subtract, multiply and divide directed numbers. 8Ni3 Calculate squares, positive and negative square roots, cubes and cube roots; use the notation $\sqrt{ } 49$ and $\sqrt[3]{64}$ and index notation for positive integer powers. 9Ae7 Substitute positive and negative numbers into expressions and formulae. 9Np3 Use the order of operations, including brackets and powers.	Stage 9 Unit 1A Number and Calculation Unit 3A Number and Calculation Stage 9 Unit 2B Algebra and Geometry Stage 9 Unit 2A Number and Calculation
MAFS.7.NS.1.2 Apply and extend previous understanding of multiplication and division and of fractions to multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a	8Nc9 Use the laws of arithmetic and inverse operations to simplify calculations with integers and fractions. 8Nc10 Use the order of operations, including brackets, with more complex calculations. 9Nc5 Recognise the effects of multiplying and dividing by numbers	Unit 3A Number and Calculation Unit 3A Number and Calculation Stage 9 Unit 2A Number and Calculation

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-$ $q)$. Interpret quotients of rational numbers by describing real-world contexts. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in Os or eventually repeats.	between 0 and 1 . 8Nf1 Find equivalent fractions, decimals and percentages by converting between them. 9Nf1 Consolidate writing a fraction in its simplest form by cancelling common factors. 8Nf2 Convert a fraction to a decimal using division; know that a recurring decimal is a fraction. 8Nf3 Order fractions by writing with common denominators or dividing and converting to decimals. 8Nf4 Add and subtract fractions and mixed numbers; calculate fractions of quantities (fraction answers); multiply and divide an integer by a fraction. 9Nf2 Add, subtract, multiply and divide fractions, interpreting division as a multiplicative inverse, and cancelling common factors before multiplying or dividing. 9Nf4 Recognise when fractions or percentages are needed to compare different quantities.	Unit 1A Number and Calculation Stage 9 Unit 1A Number and Calculation Unit 1A Number and Calculation Unit 1A Number and Calculation Unit 2A Number and Calculation Stage 9 Unit 1A Number and Calculation Stage 9 Unit 2A Number and Calculation

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
MAFS.7.NS.1.3 Solve real-world and mathematical problems involving the four operations with rational numbers.	9Mt1 Solve problems involving average speed. 9Mt2 Use compound measures to make comparisons in real-life contexts, e.g. travel graphs and value for money. 9Ma2 Know that land area is measured in hectares (ha), and that 1 hectare $=10000 \mathrm{~m}^{2}$; convert between hectares and square metres. 9Nc2 Solve word problems mentally. 9Nf3 Solve problems involving percentage changes, choosing the correct numbers to take as 100% or as a whole, including simple problems involving personal or household finance, e.g. simple interest, discount, profit, loss and tax. 8MI1 Choose suitable units of measurement to estimate, measure, calculate and solve problems in a range of contexts, including units of mass, length, area, volume or capacity.	Stage 9 Unit 2C Handling Data and Measure Stage 9 Unit 3A Number and Measure Stage 9 Unit 2C Handling Data and Measure Stage 9 Unit 1A Number and Calculation Stage 9 Unit 2A Number and Calculation Unit 1C Handling Data and Measure


```
Cambridge Secondary 1 Mathematics
```

Florida Grade 7	Stage 8

	All Problem Solving： 8Pt 1－8 Using techniques and skills in solving mathematical problems 8Ps1－6 Using understanding and strategies in solving problems	All units
EXPRESSIONS \＆EQUATIONS		
MAFS．7．EE．1．1 Apply properties of operations as strategies to add， subtract，factor，and expand linear expressions with rational coefficients．	8Ae1 Know that letters play different roles in equations，formulae and functions；know the meanings of formula and function． 8Ae2 Know that algebraic operations，including brackets，follow the same order as arithmetic operations；use index notation for small positive integer powers． 8Ae3 Construct linear expressions． 8Ae4 Simplify or transform linear expressions with integer coefficients； collect like terms；multiply a single term over a bracket． 8Ae6 Substitute positive and negative integers into formulae， linear expressions and expressions involving small powers，e．g． $3 x^{2}+4$	Unit 1B Algebra and Geometry Unit 2B Algebra and Geometry

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
	or $2 x^{3}$, including examples that lead to an equation to solve.	
MAFS.7.EE.1.2 Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05."	8As1 Generate terms of a linear sequence using term-to-term and position-to-term rules; find term-toterm and position-to-term rules of sequences, including spatial patterns.	Unit 1B Algebra and Geometry
MAFS.7.EE.2.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.	8As2 Use a linear expression to describe the nth term of a simple arithmetic sequence, justifying its form by referring to the activity or practical context from which it was generated. 9Mt2 Use compound measures to make comparisons in real-life contexts, e.g. travel graphs and value for money.	Unit 3B Algebra and Geometry Stage 9 Unit 3A Number and Measure
MAFS.7.EE.2.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.	8As3 Express simple functions algebraically and represent them in mappings. 9Ae3 Construct algebraic expressions. 9Ae4 Simplify or transform algebraic expressions by taking out single-term common factors.	Unit 1B Algebra and Geometry Stage 9 Unit 1B Algebra and Geometry Stage 9 Unit 1B Algebra and Geometry

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width? b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.	9Ae5 Add and subtract simple algebraic fractions. 8Ae7 Construct and solve linear equations with integer coefficients (unknown on either or both sides, without or with brackets). 8Ae5 Derive and use simple formulae, e.g. to convert degrees Celsius (${ }^{\circ} \mathrm{C}$) to degrees Fahrenheit (${ }^{\circ} \mathrm{F}$). 9Mt1 Solve problems involving average speed. 9Ae6 Derive formulae and, in simple cases, change the subject; use formulae from mathematics and other subjects. 9Ae11 Understand and use inequality signs ($<,>, \leq, \geq$); construct and use linear inequalities in one variable; represent the solution set on a number line.	Stage 9 Unit 2B Algebra and Geometry Unit 3B Algebra and Geometry Unit 2B Algebra and Geometry Stage 9 Unit 2C Handling Data and Measure Stage 9 Unit 2B Algebra and Geometry Stage 9 Unit 1B Algebra and Geometry
GEOMETRY		

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
MAFS.7.G.1.1 Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	9Gp8 Make and use scale drawings and interpret maps. 9Gp9 Find by reasoning the locus of a point that moves at a given distance from a fixed point, or at a given distance from a fixed straight line. 8Gp4 Interpret and make simple scale drawings. 8Gs3 Know that the longest side of a right-angled triangle is called the hypotenuse. 8Gp1 Find the midpoint of the line segment $A B$, given the coordinates of points A and B. 8Gp3 Understand and use the language and notation associated with enlargement; enlarge 2D shapes, given a centre of enlargement and a positive integer scale factor.	Stage 9 Unit 3C Handling Data and Geometry Stage 9 Unit 3C Handling Data and Geometry Unit 1C Handling Data and Measure Unit 1B Algebra and Geometry Unit 1B Algebra and Geometry Unit 3C Handling Data and Measure

Cambridge Secondary 1 Mathematics

Florida Grade 7

MAFS.7.G.1.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

Florida Mathematics Standards

Stage 8

8Gp4 Interpret and make simple scale drawings.

8Ma3 Use simple nets of solids to work out their surface areas.

9Gs6 Use a straight edge and compasses to:
construct the perpendicular from a point to a line and the perpendicular from a point on a line
inscribe squares, equilateral triangles, and regular hexagons and octagons by constructing equal divisions of a circle.

8Gs9 Use a straight edge and compasses to construct:

- the midpoint and perpendicular bisector of a line segment the bisector of an angle.

8Gs10 Use a ruler and compasses
to construct:
circles and arcs
a triangle, given three sides SSS
a triangle, given a right angle, hypotenuse and one side RHS.

Unit 1C Handling Data and Measure

Unit 2C Handling Data and Measure

Stage 9 Unit 3B Algebra and Geometry

Unit 2B Algebra and Geometry

Unit 3C Handling Data and Measure


```
Cambridge Secondary 1 Mathematics
```


Florida Grade 7

MAFS．7．G．1．3 Describe the two－dimensional figures that result from slicing three－dimensional figures，as in plane sections of right rectangular prisms and right rectangular pyramids．

	8Gs7 Draw simple nets of solids， e．g．cuboid，regular tetrahedron， square－based pyramid，triangular prism． 9Gs4 Analyse 3D shapes through plans and elevations． 9Gs5 Identify reflection symmetry in 3D shapes． 8Gs8 Identify all the symmetries of 2D shapes．	Unit 2B Algebra and Geometry Stage 9 Unit 1B Algebra and Geometry Stage 9 Unit 1B Algebra and Geometry Unit 2B Algebra and Geometry
MAFS．7．G．2．4 Know the formulas for the area and circumference of a circle and use them to solve problems；give an informal derivation of the relationship between the circumference and area of a circle．	8Ma1 Know the definition of a circle and the names of its parts；know and use formulae for the circumference and area of a circle． 9Ma3 Solve problems involving the circumference and area of circles， including by using the m key of a calculator．	Unit 3C Handling Data and Measure Stage 9 Unit 3A Number and Measure

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
MAFS.7.G.2.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi step problem to write and solve simple equations for an unknown angle in a figure.	8Gs1 Know that if two 2D shapes are congruent, corresponding sides and angles are equal. 8Gs2 Classify quadrilaterals according to their properties, including diagonal properties. 9Gp7 Use bearings (angles measured clockwise from the north) to solve problems involving distance and direction. 8Gs4 Identify alternate angles and corresponding angles. 8Gs5 Understand a proof that: the angle sum of a triangle is 180° and that of a quadrilateral is 360° the exterior angle of a triangle is equal to the sum of the two interior opposite angles. 8Gs6 Solve geometrical problems using properties of angles, of parallel and intersecting lines, and of triangles and special quadrilaterals, explaining reasoning with diagrams and text.	Unit 1 B Algebra and Geometry Unit 1B Algebra and Geometry Stage 9 Unit 3C Handling Data and Geometry Unit 1B Algebra and Geometry Unit 3B Algebra and Geometry Unit 3B Algebra and Geometry

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
MAFS.7.G.2.6 Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	8Ma2 Derive and use formulae for the area of a triangle, parallelogram and trapezium; calculate areas of compound 2D shapes, and lengths, surface areas and volumes of cuboids.	Unit 2C Handling Data and Measure

```
Cambridge Secondary 1 Mathematics
```

Florida Grade 7		Stage 8
	8Dc1 ldentify and collect data to answer a question; select the method of collection, sample size and degree of accuracy needed for measurements.	Unit 1C Handling Data and Measure

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7	Stage 8	
	understanding of correlation back to back stem-and-leaf diagrams. 8Dc3 Construct and use: - frequency tables with given equal class intervals to gather continuous data - two-way tables to record discrete data.	Unit 1C Handling Data and Measure
MAFS.7.SP.2.4 Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.	8Di2 Compare two distributions, using the range and one or more of the mode, median and mean.	Unit 2C Handling Data and Measure
MAFS.7.SP.3.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	8Db1 Know that if the probability of an event occurring is p, then the probability of it not occurring is $1-\mathrm{p}$. 7Db1 Use the language of probability to describe and interpret results involving likelihood and chance. 7Db2 Understand and use the probability scale from 0 to 1 . 9Db1 Know that the sum of probabilities of all mutually exclusive outcomes is 1 and use this when solving probability problems.	Unit 1C Handling Data and Measure Stage 7 Unit 1C Handling Data and Geometry Stage 7 Unit 1C Handling Data and Geometry Stage 9 Unit 3C Handling Data and Geometry

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 7		Stage 8

Florida Mathematics Standards		Clorida Grade 7

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 8	Stage 9	
Key ideas and details	Framework - learning objectives	Scheme of work - units
THE NUMBER SYSTEM		
MAFS.8.NS.1.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.	9Ni2 Estimate square roots and cube roots. 9Ni3 Use positive, negative and zero indices and the index laws for multiplication and division of positive integer powers. 9Nc1 Extend mental methods of calculation, working with decimals, fractions, percentages and factors, using jottings where appropriate. 9Ae11 Understand and use inequality signs ($<,>, \leq, \geq$,); construct and solve linear inequalities in one variable; represent the solution set on a number line.	Unit 2A Number and Calculation Unit 2A Number and Calculation Unit 1A Number and Calculation Unit 2B Algebra and Geometry
MAFS.8.NS.1.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., m2). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.	9Np2 Round numbers to a given number of decimal places or significant figures; use to give solutions to problems with an appropriate degree of accuracy. 9Nc1 Extend mental methods of calculation, working with decimals, fractions, percentages and factors,	Unit 1A Number and Calculation Unit 1A Number and Calculation

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 8	Stage 9	
	using jottings where appropriate.	
EXPRESSIONS \& EQUATIONS		
MAFS.8.EE.1.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $32 \times 3^{-5}=3^{-3}=$ $1 / 3^{3}=1 / 27$.	9Ni3 Use positive, negative and zero indices and the index laws for multiplication and division of positive integer powers. 9Ni2 Estimate square roots and cube roots. 9Ae2 Use index notation for positive integer powers; apply the index laws for multiplication and division to simple algebraic expressions. 9Np1 Recognise the equivalence of $0.1,1 / 10$ and 10^{-1}; multiply and divide whole numbers and decimals by 10 to the power of any positive or negative integer.	Unit 2A Number and Calculation Unit 2A Number and Calculation Unit 1B Algebra and Geometry Unit 1A Number and Calculation
MAFS.8.EE.1.2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.	9As6 Use systematic trial and improvement methods to find approximate solutions of equations such as $x^{2}+2 x=20(1,2$ and 7$)$.	Unit 3A Number and Measure

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 8	Stage 9	
MAFS.8.EE.1.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is more than 20 times larger.	9Np1 Recognise the equivalence of $0.1, \frac{1}{10}$ and 10^{-1}; multiply and divide whole numbers and decimals by 10 to the power of any positive or negative integer.	Unit 1A Number and Calculation
MAFS.8.EE.1.4 Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimetres per year for seafloor spreading). Interpret scientific notation that has been generated by technology.	9Np1 Recognise the equivalence of $0.1, \frac{1}{10}$ and 10^{-1}; multiply and divide whole numbers and decimals by 10 to the power of any positive or negative integer.	Unit 1A Number and Calculation
MAFS.8.EE.2.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	9Nf6 Recognise when two quantities are directly proportional; solve problems involving proportionality, e.g. converting between different currencies. 9As8 Use algebraic methods to solve problems involving direct proportion, relating solutions to graphs of the equations.	Unit 3A Number and Measure Unit 3B Algebra and Geometry
MAFS.8.EE.2.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ for a line intercepting the vertical axis at b .	9As4 Construct tables of values and plot the graphs of linear functions, where y is given implicitly in terms of x, rearranging the equation into the form $y=m x+c$; know the significance of m and find the gradient of a straight line graph.	Unit 2B Algebra and Geometry

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 8	Stage 9	
MAFS．8．EE．3．7 Solve linear equations in one variable． a．Give examples of linear equations in one variable with one solution， infinitely many solutions，or no solutions．Show which of these possibilities is the case by successively transforming the given equation into simpler forms，until an equivalent equation of the form $\mathrm{x}=\mathrm{a}, \mathrm{a}=\mathrm{a}$ ，or $\mathrm{a}=\mathrm{b}$ results（where a and b are different numbers）． b．Solve linear equations with rational number coefficients，including equations whose solutions require expanding expressions using the distributive property and collecting like terms．	9Ae8 Construct and solve linear equations with integer coefficients （with and without brackets，negative signs anywhere in the equation， positive or negative solution）；solve a number problem by constructing and solving a linear equation．	Unit 3B Algebra and Geometry
MAFS．8．EE．3．8 Analyze and solve pairs of simultaneous linear equations． a．Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs， because points of intersection satisfy both equations simultaneously． b．Solve systems of two linear equations in two variables algebraically，and estimate solutions by graphing the equations． Solve simple cases by inspection．For example， $3 x+2 y=5$ and $3 x$ $+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 ． c．Solve real－world and mathematical problems leading to two linear equations in two variables．For example，given coordinates for two pairs of points，determine whether the line through the first pair of points intersects the line through the second pair．	9Ae9 Solve a simple pair of simultaneous linear equations by eliminating one variable．	Unit 1B Algebra and Geometry
FUNCTIONS		

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 8	Stage 9	
MAFS.8.F.1. 1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	9As7 Construct functions arising from real-life problems; draw and interpret their graphs. 9Ae10 Expand the product of two linear expressions of the form $x \pm n$ and simplify the corresponding quadratic expression. 9As3 Find the inverse of a linear function.	Unit 3B Algebra and Geometry Unit 3B Algebra and Geometry Unit 2B Algebra and Geometry
MAFS.8.F.1.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	9As4 Construct tables of values and plot the graphs of linear functions, where y is given implicitly in terms of x, rearranging the equation into the form $y=m x+c$; know the significance of m and find the gradient of a straight line graph.	Unit 2B Algebra and Geometry
MAFS.8.F.1.3 Interpret the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.	9As4 Construct tables of values and plot the graphs of linear functions, where y is given implicitly in terms of x, rearranging the equation into the form $y=m x+c$; know the significance of m and find the gradient of a straight line graph.	Unit 2B Algebra and Geometry
MAFS.8.F.2.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and	9As1 Generate terms of a sequence using term-to-term and position to term rules.	Unit 1B Algebra and Geometry

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 8	Stage 9	
initial value of a linear function in terms of the situations it models, and in terms of its graph or a table of values.	9As2 Derive an expression to describe the nth term of an arithmetic sequence.	Unit 1B Algebra and Geometry
MAFS.8.F.2.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g. where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	9As5 Find the approximate solutions of a simple pair of simultaneous linear equations by finding the point of intersection of their graphs.	Unit 2B Algebra and Geometry
GEOMETRY		
MAFS.8.G.1.1 Verify experimentally the properties of rotations, reflections, and translations: a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.	9Gs5 Identify reflection symmetry in 3D shapes. 9Gp1 Tessellate triangles and quadrilaterals and relate to angle sums and half-turn rotations; know which regular polygons tessellate, and explain why others will not. 9Gp2 Use the coordinate grid to solve problems involving translations, rotations, reflections and enlargements. 9Gp3 Transform 2D shapes by combinations of rotations, reflections and translations; describe the transformation that maps an object onto its image.	Unit 1B Algebra and Geometry Unit 1B Algebra and Geometry Unit 1B Algebra and Geometry Unit 2B Algebra and Geometry

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 8	Stage 9	
MAFS.8.G.1.2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figure describe a sequence that exhibits the congruence between them.	9Gp5 Recognise that translations, rotations and reflections preserve length and angle, and map objects on to congruent images, and that enlargements preserve angle but not length.	Unit 2C Handling Data and Measure
MAFS.8.G.1.3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	9Gp6 Know what is needed to give a precise description of a reflection, rotation, translation or enlargement.	Unit 2C Handling Data and Measure
MAFS.8.G.1.4 Understand that a two dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotation, reflections, translations, and dilations; given two similar two dimensional figures, describe a sequence that exhibits the similarity between them.	9Gp4 Enlarge 2D shapes, given a centre and positive integer scale factor; identify the scale factor of an enlargement as the ratio of the lengths of any two corresponding line segments.	Unit 2C Handling Data and Measure
MAFS.8.G.1.5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	9Gs1 Calculate the interior or exterior angle of any regular polygon; prove and use the formula for the sum of the interior angles of any polygon; prove that the sum of the exterior angles of any polygon is 360°. 9Gs2 Solve problems using properties of angles, of parallel and intersecting lines, and of triangles, other polygons and circles, justifying inferences and explaining reasoning with diagrams and text.	Unit 2B Algebra and Geometry Unit 2B Algebra and Geometry

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 8	Stage 9	
MAFS.8.G.2.6 Explain a proof of the Pythagorean Theorem and its converse.	9Gs7 Know and use Pythagoras' theorem to solve two-dimensional problems involving right-angled triangles.	Unit 3B Algebra and Geometry
MAFS.8.G.2.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	9Gs7 Know and use Pythagoras' theorem to solve two-dimensional problems involving right-angled triangles.	Unit 3B Algebra and Geometry
MAFS.8.G.2.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	9Gs7 Know and use Pythagoras' theorem to solve two-dimensional problems involving right-angled triangles.	Unit 3B Algebra and Geometry
MAFS.8.G.3.9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.		
STATISTICS \& PROBABILITY		
MAFS.8.SP.1.1 Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	9Dp1 Calculate statistics and select those most appropriate to the problem. 9Di1 Interpret tables, graphs and diagrams and make inferences to support or cast doubt on initial conjectures; have a basic understanding of correlation.	Unit 1C Handling Data and Measure Unit 2C Handling Data and Measure

Learn • Discover • Achieve

Florida Mathematics Standards	Cambridge Secondary 1 Mathematics	
Florida Grade 8	Stage 9	
MAFS.8.SP.1.2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	9Dp2 Select, draw, and interpret diagrams and graphs, including: - frequency diagrams for discrete and continuous data - line graphs for time series - scatter graphs to develop understanding of correlation back to back stem-and-leaf diagrams.	Unit 2C Handling Data and Measure
MAFS.8.SP.1.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	9Di3 Relate results and conclusions to the original question.	Unit 2C Handling Data and Measure
MAFS.8.SP.1.4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?	9Di2 Compare two or more distributions; make inferences, using the shape of the distributions and appropriate statistics.	Unit 2C Handling Data and Measure
Problem solving is implied throughout the Florida Standards but is an explicit strand of Cambridge learning objectives (9Pt1-7, 9Ps1-7).	Stage 9 Framework not mapped: 9Nc3-4, 9Ae1, 9Ma1, 9Pt1-7, 9Ps17	

© Cambridge International Examinations 2016

